Short-term in vivo biological and mechanical remodeling of porcine acellular dermal matrices

نویسندگان

  • Gary A. Monteiro
  • Neil L. Rodriguez
  • Aubrey I. Delossantos
  • Christopher T. Wagner
چکیده

The purpose of this study was to assess the biological revitalization and mechanical integrity of Strattice(™) Reconstructive Tissue Matrix, a porcine-derived acellular dermal matrix, in vivo over time. We expanded the traditional subcutaneous model to incorporate biologic matrix scaffolds large enough to allow evaluation of mechanical properties in addition to the assessment of histological changes. Hematoxylin and eosin histology staining was used to evaluate cellular and tissue changes, and a mechanical testing frame was used to measure the ultimate tensile stress and Young's modulus of the implanted material over time. Cell infiltration and blood vessel formation into the porcine-derived acellular dermal matrix were evident at 2 weeks and increased with implantation time. Mechanical remodeling resulted in an initial decrease in ultimate tensile stress, not associated with cell infiltration, followed by a significant increase in material strength, concurrent with histological evidence of new collagen synthesis. Young's modulus followed a similar trend.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porcine incisional hernia model: Evaluation of biologically derived intact extracellular matrix repairs

We compared fascial wounds repaired with non-cross-linked intact porcine-derived acellular dermal matrix versus primary closure in a large-animal hernia model. Incisional hernias were created in Yucatan pigs and repaired after 3 weeks via open technique with suture-only primary closure or intraperitoneally placed porcine-derived acellular dermal matrix. Progressive changes in mechanical and bio...

متن کامل

Bovine versus Porcine Acellular Dermal Matrix: A Comparison of Mechanical Properties

BACKGROUND Porcine and bovine acellular dermal matrices (PADM and BADM, respectively) are the most commonly used biologic meshes for ventral hernia repair. A previous study suggests a higher rate of intraoperative device failures using PADM than BADM. We hypothesize that this difference is, in part, related to intrinsic mechanical properties of the matrix substrate and source material. The foll...

متن کامل

Dural repair using porcine ADM: two cases and a literature review

The use of acellular dermal matrices (ADM) for dural repair is very scantily described in the literature. We report two cases of dural repair using porcine ADM and a literature review. ADM and especially StratticeTM pliable may be a useful alternative to other dural substitutes. Further evaluation would be favorable.

متن کامل

Delayed primary closure of contaminated abdominal wall defects with non-crosslinked porcine acellular dermal matrix compared with conventional staged repair: a retrospective study

INTRODUCTION Synthetic mesh has been used traditionally to repair abdominal wall defects, but its use is limited in the case of bacterial contamination. New biological materials are now being used successfully for delayed primary closure of contaminated abdominal wall defects. The costs of biological materials may prevent surgeons from using them. We compared the conventional staged repair of c...

متن کامل

Acellular dermal matrices in abdominal wall reconstruction: a systematic review of the current evidence.

BACKGROUND Reconstruction of the anterior abdominal wall is a complex procedure that can be complicated by contamination, loss of domain, previous scarring or radiotherapy, and reduced availability of local tissues. With the introduction of acellular dermal matrices to clinical use, it was hoped that many of the problems associated with previous synthetic materials could be overcome. With their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013